Correction for The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes

نویسندگان

  • Raqual Bower
  • Douglas Tritschler
  • Kristyn VanderWaal
  • Catherine A. Perrone
  • Joshua Mueller
  • Laura Fox
  • Winfield S. Sale
  • M. E. Porter
چکیده

The nexin-dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detailed structural and biochemical characterization of the nexin-dynein regulatory complex

The nexin-dynein regulatory complex (N-DRC) forms a cross-bridge between the outer doublet microtubules of the axoneme and regulates dynein motor activity in cilia/flagella. Although the molecular composition and the three-dimensional structure of N-DRC have been studied using mutant strains lacking N-DRC subunits, more accurate approaches are necessary to characterize the structure and functio...

متن کامل

Direction of force generated by the inner row of dynein arms on flagellar microtubules

Our goal was to determine the direction of force generation of the inner dynein arms in flagellar axonemes. We developed an efficient means of extracting the outer row of dynein arms in demembranated sperm tail axonemes, leaving the inner row of dynein arms structurally and functionally intact. Sperm tail axonemes depleted of outer arms beat at half the beat frequency of sperm tails with intact...

متن کامل

The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella

Cilia and flagella are highly conserved microtubule (MT)-based organelles with motile and sensory functions, and ciliary defects have been linked to several human diseases. The 9 + 2 structure of motile axonemes contains nine MT doublets interconnected by nexin links, which surround a central pair of singlet MTs. Motility is generated by the orchestrated activity of thousands of dynein motors, ...

متن کامل

Effects of trypsin-digested outer-arm dynein fragments on the velocity of microtubule sliding in elastase-digested flagellar axonemes.

Flagellar movement is caused by the coordinated activity of outer and inner dynein arms, which induces sliding between doublet microtubules. In trypsin-treated flagellar axonemes, microtubule sliding induced by ATP is faster in the presence than in the absence of the outer arms. To elucidate the mechanism by which the outer arms regulate microtubule sliding, we studied the effect of trypsin-dig...

متن کامل

Microtubule sliding in mutant Chlamydomonas axonemes devoid of outer or inner dynein arms

To clarify the functional differentiation between the outer and inner dynein arms in eukaryotic flagella, their mechanochemical properties were assessed by measuring the sliding velocities of outer-doublet microtubules in disintegrating axonemes of Chlamydomonas, using wild-type and mutant strains that lack either of the arms. A special procedure was developed to induce sliding disintegration i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013